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Abstract: Debris flows are among the most destructive processes occurring in mountain environments. It is 
recognized that rheology describing the relationship between stress and strain rates is mainly dependent from 
interstitial fluid content, pore fluid pressure, sediment concentration, and size and distribution of dispersed 
grains. However, due to their complex behaviour, it is unlikely that they can be characterized by a prefixed 
rheological model. Within this framework, we have assessed the feasibility of a double model of similarity of 
Reynolds and Froude, as attempt to mimicking the interstitial fluid phase at laboratory scale. For the purpose 
we used the Sodium Carboxymethylcellulose (Na-CMC or briefly CMC) as thickening agent in aqueous 
solutions. By varying the solute concentration, it was possible to reproduce the pore fluid of a specific 
viscosity. 
The related transparency of such solutions allows observing and describing evolution processes by high-
frequency digital acquisition. Among the others, the main innovative feature consisted in the possibility of 
establishing a relationship between laboratory experiments and corresponding assumed prototypes, by means 
of the proposed model scaling. 
The experimental campaign being carried out, allowed to establish a state equation for the model reference, 
that is a relationship among viscosity, solute concentration and temperature. A predominant dependence 
between viscosity and solute concentration was observed, marking another advantage in using such 
solutions. The similarity then connect model results to the prototype. 
 
  
Key-Words: - Debris flows – Interstitial fluid – Sodium Carboxymethylcellulose – Na-CMC – Physical 
modelling – model scaling – Viscosity – viscometric tests – Rheological models. 
 

1 Introduction 
In the last few decades, debris flows [1-3] have been 
extensively studied by the scientific community 
involved in, because of their potentially destructive 
power associated. Numerical investigations of 
triggering, propagation, amplification and 
deposition processes aimed at the definition of 
advanced models, see e.g. [4-7]. Still, they are based 
on simplifying assumptions.  
For instance, the related hazard assessment relies on 
empirical or semi-empirical hydraulic resistance 
formulae; the shear stress between channel 
boundaries and the flowing mass is currently 

determined by relationships, developed in non-
hydrodynamic contests, e.g. the Coulomb law 
describing the shear stress τ as function of the 
cohesion c, the normal stress σ and the friction 
angle φ. 
As matter of facts, rheological laws need to be first 
validated via experimental investigation [8-11], 
depending on the particular phenomenon observed.  
As commonly known, laboratory investigation relies 
on scale models. More precisely, once ruling 
parameters are identified, scaling models are 
established, in which the weight of such variables is 
assumed to be relevant. The lower is the number of 
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variables omitted, the greater is the accuracy in 
reproducing the real phenomenon at laboratory 
scale. 
In this framework, starting from references [12,13], 
this work further investigates about the feasibility of 
a double model of similarity of Reynolds and 
Froude, as attempt to mimicking the interstitial fluid 
phase in debris flows kind of phenomena. For the 
purpose, water solutions of Sodium 
Carboxymethylcellulose (Na-CMC or strictly CMC) 
are used for the fluid in the model. 
Also known as cellulose gum, the CMC is an 
anionic water-soluble polymer derived from the 
cellulose. It is widely used as an economical 
viscosity modifier or thickener in different sectors 
of industry and technology. Applications can be 
found in pharmaceutical or fabric manufacturing, in 
orthopedic surgery as lubricant for articulations, in 
wine industry, in foods and beverages for its 
stabilizing effects or even for the production of 
cigarettes. An example in Civil Engineering is 
related to its use as alternative to drilling mud 
during well perforation. 
Despite the existence in literature of studies 
concerning the use of chemical additives as 
rheological modifiers (e.g. see [14]), to the authors 
knowledge there are no specific experimental 
investigations related to the use of CMC-water 
solutions as attempt to mimicking the interstitial 
fluid in laboratory debris flows. As matter of facts, 
there are relevant advantages in such cases. In 
particular, accurate viscosity values can be attained 
as function of the employed CMC concentration; the 
rheological behaviour of the CMC-water solutions is 
slightly pseudo-plastic, hence approximable to the 
Newtonian relationship for low rates of 
deformation; the related transparency of such 
solutions allows observing and describing evolution 
processes on flumes boundaries by high-frequency 
digital camera acquisition. A special experimental 
apparatus, designed by the Authors, has been then 
designed (see Figure 1).  
 
 
2 The model of similitude 
Advantages, previous mentioned, suggest the use of 
the CMC as viscosity modifier for modelling the 
interstitial fluid in laboratory debris flows. 
The similitude model, next proposed, takes into 
account the scale effect between the laboratory 
experiment (model) and the corresponding real 
event (reference prototype). 
Viscosity values to be imposed for the model are 
then derived. 
 

 

 
 

Fig. 1. CMC-water solutions can be conveniently 
used in open channel flow laboratory investigations. 
 
Commonly known, physical modelling of real 
events is based on the equality, between model and 
prototype, of specific dimensionless quantities, that 
is of specific index numbers. It is worth recalling 
that such groupings are determined as function of 
those physical quantities judged to be relevant for a 
comprehensive description of the phenomenon at 
hand. By recalling the Buckinghamm theorem, if a 
physical phenomenon is described by n variables, r 
of which independent, then n-r dimensionless 
grouping numbers can be established for its 
comprehensive description. Therefore, it is possible 
to migrate from a relationship, usually unknown, 
which bonds n variables (α, β, γ, ... , δn), to a new 
one, describing the dependence among n-r 
dimensionless parameters, that is: 
 

( ) ( ) 0 , ... ,,,0 , ... ,,, 321 =ππππ⇒=δγβα −rnn Ff
(1) 

 
being πi the so called index numbers of the physical 
modelling. In principle, they should be the same in 
the model and the prototype – yielding a full model 
of similarity – a condition that cannot be achieved in 
practice. 
The aim here is to derive viscosity values of CMC-
water solutions to be used in laboratory 
investigation for the analysis of debris flows kind of 
phenomena. They are characterized by a particular 
type of motion, known as “granular”, which can be 
assumed half way between quasi-static regimes, 
typical of landslides, and hydrodynamic regimes, 
typical of dilute suspensions [15]. Granular regimes 
can be at low, intermediate or high velocity of 
deformation. The motion is said to be: in the first 
case “macro-viscous”, in the intermediate case “of 
transition” while in the latter case is said to be 
“inertial”. The regime of motion can be identified 
by two dimensionless parameters [16]. The 
dispersed Reynolds number 
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and the Bagnold number 
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where Txy is the dispersed shear stress, ρs and ds are 
the density and the reference size of the solid phase, 
µ the dynamic viscosity, cl the linear concentration 
and du/dy the velocity of deformation. 
Other approaches, developed more recently, are 
available for identifying the working regime, see for 
instance [17]. 
Rd > 55 and B > 450 correspond to the inertial kind 
of regime. In this case the contribution of 
gravitational terms is predominant. The 
phenomenon can be described by a Froude model of 
similarity. 
Rd < 10 and B < 40 matches the case of the macro-
viscous regime. Viscous stresses are predominant 
respect the inertial ones. Tangential and normal 
stresses are linear function of the velocity of 
deformation. In this case, the phenomenon can be 
described by a Reynolds model of similarity. 
Debris flows are half way the cases aforementioned 
[18], therefore it is necessary (see for instance [19] 
and the appendix of [18]) taking into account the 
contribution of both viscous and gravitational terms. 
This can be done by coupling Reynolds and Froude 
models of similarity. The double similitude is 
achievable by only imposing a specific relationship 
between model and prototype viscosities. In facts, 
assuming the following parameters: viscosity µ, 
density ρ, velocity V, spatial scale l and referring 
them to the prototype and the model with subscript 
p and m respectively, the equality of Reynolds 
numbers can be rewritten as: 
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in the case of same densities, a condition fulfilled as 
long as low molecular weight of CMC is used [20]. 
The equality of Froude numbers yields: 
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or more concisely:  
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as the acceleration of gravity is expected to be the 
same in the model and the prototype. 
By combining eqs (5) and (7) the next equation is 
given 
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where λ is the assumed spatial scale between model 
and prototype. Eq. (8) sets a relationship between 
viscosities in the model “m” and prototype “p”. 
Assuming a specific interstitial fluid in the 
prototype, i.e. µp, eq. (8) implies that the double 
Reynolds-Froude similitude model can be 
established only adopting for the model a solution of 
a certain viscosity. Such a condition is not always 
achievable. In facts, since the prototype is 
commonly scaled down, follows that 0<λ<1. 
As typical viscosity µp values of the inner fluid in 
real debris flows range from water’s (µw = 1 × 10-3 
Pa*s) to 102 Pa*s (intended as maximum order of 
magnitude), it is possible to reproduce the prototype 
only if µm≥µw . As for instance, considering a fluid 
featuring the same viscosity µw of water, a 
geometric length scale λ=0.1 would imply the use of 
a fluid with a viscosity value being equal to 3.16 × 
10-5 Pa*s for the model, which is not consistent. 
Such a limitation is not so tightening as real 
interstitial fluids are commonly made up of water 
and fine sediments, hence with an associated 
viscosity greater (or much greater) than water’s.. 
Fixing  λ, it is always possible to determine a lower 
limit of viscosity µp above which the corresponding 
fluid can be scaled, that is µm > µw. The closer is λ 
to the unity, the greater is the range of 
reproducibility: for the limit value λ=1, eq. (8) 
yields µm=µp, i.e. model and prototype are the same. 
Let us consider the simplified case of mudflows 
analyzed by O’Brien and Julien [21], made up of 
30% of clay. Solid concentration cv, ranging from 0 
to 0.6 is related to the dynamic viscosity µp as next 
shown in Table 1 and 2. As can be seen, fixing 
λ=0.05 (see Table 1) allows reproducing mudflows 
with solid concentration cv>0.13 (bold marked). 

(4) 

(5) 

(6) 

(7) 

(8) 

(3) 
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Increasing λ allows reproducing a greater range of 
solid concentrations. In facts, for λ=0.1 the lower 
limit is cv>0.03 (see Table 2). 

cv µp µm Check 
[-] [Pa*s] [Pa*s] 

    
0.60 311.77 3.49E+00 √ 
0.58 196.81 2.20E+00 √ 
0.56 124.25 1.39E+00 √ 
0.54 78.44 8.77E-01 √ 
0.52 49.52 5.54E-01 √ 
0.50 31.26 3.49E-01 √ 
0.48 19.73 2.21E-01 √ 
0.46 12.46 1.39E-01 √ 
0.44 7.87 8.79E-02 √ 
0.42 4.97 5.55E-02 √ 
0.40 3.14 3.51E-02 √ 
0.38 1.98 2.21E-02 √ 
0.36 1.25 1.40E-02 √ 
0.34 0.79 8.84E-03 √ 
0.32 0.50 5.58E-03 √ 
0.30 0.32 3.53E-03 √ 
0.28 0.20 2.24E-03 √ 
0.26 0.13 1.42E-03 √ 
0.24 0.08 9.02E-04 NO 
0.22 0.05 5.75E-04 NO 
0.20 0.03 3.69E-04 NO 
0.18 0.02 2.39E-04 NO 
0.16 0.01 1.56E-04 NO 
0.14 0.01 1.04E-04 NO 
0.12 0.01 7.05E-05 NO 
0.10 0.00 4.93E-05 NO 
0.00 0.00 1.47E-05 NO 

 

Table 1. Viscosity µp values of mudflows analyzed in 
[21] and corresponding µp for λ=0.05. Red values are not 
reproducible in principle, since µm<µw (clear water). 
 
The model of similitude being established, requires 
not only that the measured viscosity can be 
transferred to the prototype and vice-versa (see eq. 
8). Scaling factors must be in a certain relationship. 
To clarify this issue, let us introduce the geometric 
scale λ, the mass scale m and le time scale τ as 
follows: 
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3 = , that is  

m = λ3 (10) 
 

On the other and, since gravity is constant (i.e. gp = 

gm) follows that 12 =
τ
λ or 

cv µp µm Check 
[-] [Pa*s] [Pa*s] 

    
0.60 311.77 9.86E+00 √ 
0.58 196.81 6.22E+00 √ 
0.56 124.25 3.93E+00 √ 
0.54 78.44 2.48E+00 √ 
0.52 49.52 1.57E+00 √ 
0.50 31.26 9.89E-01 √ 
0.48 19.73 6.24E-01 √ 
0.46 12.46 3.94E-01 √ 
0.44 7.87 2.49E-01 √ 
0.42 4.97 1.57E-01 √ 
0.40 3.14 9.92E-02 √ 
0.38 1.98 6.26E-02 √ 
0.36 1.25 3.96E-02 √ 
0.34 0.79 2.50E-02 √ 
0.32 0.50 1.58E-02 √ 
0.30 0.32 9.99E-03 √ 
0.28 0.20 6.33E-03 √ 
0.26 0.13 4.01E-03 √ 
0.24 0.08 2.55E-03 √ 
0.22 0.05 1.63E-03 √ 
0.20 0.03 1.04E-03 √ 
0.18 0.02 6.75E-04 NO 
0.16 0.01 4.41E-04 NO 
0.14 0.01 2.93E-04 NO 
0.12 0.01 1.99E-04 NO 
0.10 0.00 1.39E-04 NO 
0.00 0.00 4.16E-05 NO 

 

Table 2. Viscosity µp values of mudflows analyzed in 
[21] and corresponding µp for λ=0.1. In this case, a wider 
range of concentrations can be modeled (i.e. for cv>0.03). 
 
λ = τ2 (11) 
 

Lastly, since eq. (8) can be rewritten as 2
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It is simple to ascertain that combining two of the 
above eqs. (10) - (12) yields back the remaining 
one. All physical dimensionless quantities can be 
therefore expressed as function of one of the scales 
introduced in eqs. (9). As for instance, the velocity 
ratio turns out to be 
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for discharges: 
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for forces: 
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and so on. 
 
 
3 CMC-water solutions properties 
In this section, properties of CMC-water solutions 
are recalled. 
 
 
3.1 Viscosity definition 
Viscosity plays a key role in numerical modelling of 
debris flow propagation [22], both in single-
equivalent phase [23]-[25] and multi-phase [4], [17], 
[26,27] continuum approaches. While mass flow is 
treated as a homogeneous fluid in the former case, 
obeying a rheologic formulation such as the 
Bingham or the more generalized Herschel-Bulkley 
representation, a specific stress-strain relationship 
for the interstitial fluid has to be imposed in the 
latter one, being treated separately. 
The viscosity of the fluid entrapped in the voids is 
greater than water’s as it is composed by water and 
fine sediments (e.g. silt, clay, thin sand). Such a 
solid component of variable concentration, remains 
suspended inside the interstitial fluid – acting as 
carrier – thank to the exerted viscous forces. 
Particles of greater dimensions (>500µm for 
simplicity), forming the solid component of the 
whole flowing mass, move downstream while 
interacting among them [17]. As one can perceive, 
the physics behind the phenomenon is quite 
complicated. Huge literature (a small amount is 
reported in the References) has been produced so 
far, in attempt to assessing it. 
The presence of fine sediments in the interstitial 
fluid affect both its density ρf and dynamic 
viscosity µ. 
Fluid density ρf can be evaluated by considering the 
following weighted averaging:  
 
ρf = ρfines cfines + ρw (1-cfines)  (16) 
 

where ρw is the water density while ρfines and cfines 
are the density and the concentration of fine 
sediments respectively. The presence of air is 
neglected. 
For the viscosity parameter µ, there is not an 
univocal formulation in literature, see for instance 
[28,29]. It certainly depends on the sediment 
concentration cfines as well as on the amount of 
cohesive material, forming the interstitial fluid [30], 
but it is also function of the local rate of 
deformation, size distribution and mineralogical 
properties of fine sediments.  
Empirical analysis of O’Brien and Julien [21] 
allowed to define a general relationship for the 
dynamic viscosity, as function of cfines, as follows: 

fines1
1μ ce ⋅β⋅α=  (17) 

  
where the constants α1, and β1 are defined on the 
basis of the specific experimental case. 
CMC-water solution viscosity will depend on the 
solute concentration and temperature of the mixture 
as next explained in Section 3.2. On such basis, 
specific solution concentrations can be reproduced 
as reference for modelling debris flows at laboratory 
scale. 
 
 
3.2 Rheological definition 
CMC-water solutions feature a rheological 
behaviour slightly pseudoplastic, i.e. of shear-
thinning type. They can be then approximated as a 
Newtonian fluid for low rates of deformations [20].  
This aspect turns out to be a significant fact towards 
the aims here pursued. In facts, debris flow 
movements may be numerically modelled through 
two distinct mathematical approaches: 
 

- a first one, based on the assumption of the 
moving of an equivalent fluid: liquid and 
solid phases are “merged” into a single-
phase medium, which is in turn modelled by 
specific rheological laws, see for instance 
[31]. Such a simplified interpretation is 
particularly suitable for wet mass 
movements in which the coarse granular 
component is negligible, i.e. in the case of 
mudflows or hyperconcentrated floods [29]; 
 

- a second one, based on the theory of 
mixtures, in which dynamic stress 
contributions of solid and liquid phases, 
generally uncoupled, are separately 
accounted [17] in the ruling momentum 
equations. Resulting models are more 
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complicated to establish than the previous 
ones, but closer to the reality. 

 
In both approaches, both appropriate viscosity 
description (of the entire “equivalent moving mass” 
in the first case, of the interstitial fluid in the second 
case) and rheology formulation are fundamental. 
In single phase continuum models, different stress-
strain relationships can be assumed, e.g. based on 
Bingham, Herschel-Bulkley (as already stated in 
section 3.1), dilatant fluid of Takahashi [32], or 
even Newtonian models [33]. In the mixture’s 
theory, rheology description of the interstitial fluid 
(water and fine sediments) is related to the 
concentration of the solid component. 
Here, the viscosity field of Na-CMC/water solutions 
is derived experimentally, assuming a stress-strain 
relationship based on the Newtonian law, as low 
rates of deformation are expected. Results are 
transferred to the real world by means of the 
similitude model previously described, in order to 
connect laboratory results with corresponding true 
viscosities, expected in real events. 
Nonetheless, it is worth mentioning that such 
solutions may exhibit a tixotropic behaviour [20] 
when undergo to cycles of steady states and stress-
strain solicitations. In such cases, the fluid become 
hysteretic with a time-varying viscosity. To 
overcome such issue, a single sample of Na-
CMC/water solution is recommended to be used 
once, or more complicated models must be taken 
into account, to describe the relationship between 
viscosity and shear rate of deformation, e.g. see 
[34]. 
 
 
3.3 The transparency feature 
Transparency of CMC-water solutions turns out to 
be useful while carrying laboratory tests in which 
they are employed. For instance, a propagating 
viscous mass of solid particles dispersed in a CMC-
water solution, acting as interstitial fluid, can be 
described at the boundaries of a transparent open 
channel flow laboratory (e.g. see Figure 1), by 
means of digital images taken with a high speed 
video camera [35].  
 

 
 
Fig. 2. Solute concentration of CMC-water solutions 
is set by using precision scale and a 250-ml flask. 
Kinematics can be therefore described by processing 
them with a PIV technique. Dynamics can be 
described as well, by measuring wall stresses [36] 
by specific sensor probes. 
In such a way, the experimentation can provide 
more meaningful insights than those obtainable 
from an hypothetic observation of real wet granular 
flows, in which the interstitial fluid is opaque for the 
presence of fine components such as silts or clays 
and, most importantly, banks and channel bed are 
not transparent, leaving only the free surface to the 
observer. 
 
 
4 Materials and methods 
4.1 The laboratory equipment 
In order to describe the viscosity field of CMC-
water solutions as function of solute concentration 
and temperature, viscosimetric tests were performed 
at the Department of Industrial Engineering (DIIN), 
University of Salerno (Italy), employing the digital 
thermostatic ensemble UTV 190, made by I.S.Co. 
s.r.l.. It is basically composed by two components: 
the thermostatic bath and the heater GTR 190. The 
first one consists of a parallelepiped tank filled by 
the thermostatic liquid, commonly water. The 
container can be considered adiabatic. Temperature 
is kept fixed for the time needed to carry out a 
single test. The upper cover is composed by an iron 
plate, four holes provided through which the same 
number of viscometers can be submerged in the 
heated liquid. 
The heater is composed by a pump and a heating 
coil through which the moving liquid is heated by 
an electric resistance. The hydraulic circuit is 
submerged in the thermostatic bath, together with 
the temperature probe. 
The energy supplied by the electric resistance heats 
the liquid in the heating coil, which in turn warms 
up the liquid in the thermostatic bath for convection. 
Once reached the claimed temperature read at the 
probe, the bath receives four capillary viscometers, 
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of Ostwald type. Their diameter is not constant but 
assumed to be greater for higher concentrations of 
CMC. This is due to the expected corresponding 
higher viscosity values. 
The preparation of solutions of specific 
concentrations was performed by means of a 
precision digital scale (tolerance being 0.1g) and an 
Erlenmeyer flask (see Fig. 2). The relative 
procedure for samples attainment is next given. 
 
 
4.2 Procedure for the preparation of samples 
In order to derive the relationship describing the 
viscosity field as function of solute concentration c 
and temperature T, 8 different solutions were 
prepared. The adopted procedure is next given: 
 

1. initial adjustment of the scale (setting to 0) 
without the sample; 

2. weight measurement of an empty and dry 
flask; 

3. re-initialization of the scale (setting to 0) 
with the empty flask; 

4. weight measurement of the flask filled with 
the desired volume of water; 

5. re-initialization of the scale (setting to 0) 
with an empty and dry flask; 

6. weight measurement of the flask filled with 
the desired CMC content to a desired value; 

7. mixing water and solute, knowing their 
relative weight, that is preparation of a 
solution with known concentration; 

8. cleaning the measurement devices for a new 
sequence of operations from 1 to 7. 

 
 
4.3 Experimental tests 
After the preparation of samples (see previous 
section 3.2), a week was then waited for the 
completion of the related solution processes. 
Sample viscosities were then measured by means of 
the digital thermostatic ensemble UTV 190. For 
each sample (i.e. for each specific CMC 
concentration), readings were taken at different 
temperatures (step approximately set to ∆T=5°C). 
The related procedure for measuring the viscosities 
is next given: 

 
1. filling the four viscometers with as many 

CMC-water solution samples;  
2. introduction of the viscometers into the 

thermostatic bath through the upper holes; 
3. setting temperature of the thermostatic bath 

to a desired value; 
4. keeping the selected temperature for about 

15 minutes by means of the heater, in order 

to assure that each solution reaches the same 
temperature level of the bath; 

5. test execution was then carried out, 
following the manufacturer instructions; 

6. evaluating the viscosity by means of the 
following equation: 
 

ν = t·K 
 
where ν is the dynamic viscosity in 
centistokes (cs), t is the test duration in 
seconds (s), and K is an instrument constant; 

7. cleaning and drying of the employed 
viscometers for a new sequence of 
operations from 1 to 6. 

 
Test duration t is measured with a digital 
chronometer (0.1s of precision tolerance). 
 
 
5. Results 
5.1 Relationship between viscosity µp, CMC 
concentration c and temperature T in the 
prototype. 
The functional µp(c,T) is here derived on the basis of 
the acquired data taken from the experimental 
investigation described in section 3.3. 
Measurements are fitted in order to obtain µp(c,T) as 
a 3D functional in space. Spatial fitting is performed 
sequentially, first on the independent variable 
temperature T and then on the concentration c, 
having in mind that viscosity increases with the 
decreasing of the former and increases with the 
increasing of the latter. 
For each sample, the concentration of CMC c is 
fixed and known. The first regression yields the 
function: 

 µp = b·mΤ (10) 

with coefficients b and m obtained by applying the 
generalized least square method. 
 

 

(4) 
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Fig. 3. Regression curve µp = b·mT for CMC 
concentration c = 0.25%. 
 
Figure 3 shows the regression curve, obtained for 
the specific case c = 0.25%. Fittings is quite 
satisfying as the coefficient of determination is R2 = 
0.94. Figure 4 shows the regression applied for all 
samples, which measured concentration is specified 
in Table 2. Dependent variable needs to be 
expressed in logarithmic scale as in this case the 
model viscosity ranges over four orders of 
magnitude. 
 

 

Fig. 4. Regression curves µp = b·mT for all samples. 
 
 

c (%) M B 
0 0.97744 0.00182 

0.06 0.98002 0.00670 
0.12 0.98539 0.01374 
0.2 0.96959 0.02363 
0.25 0.96836 0.03803 
0.41 0.97326 0.11137 
0.7 0.96372 0.15642 
1.51 0.94974 9.92663 

 

 
Table 2. Regression coefficients m and b for all 
samples prepared. 

 
Coefficients b and m are then regressed on the 
concentration c, yielding the following power laws: 
 

cb e
m c

βα
χ δ

= ⋅
= + ⋅

 

 
where coefficients α, β, χ, δ  are next given: 

 
α = 0.00829; β =4.693; χ = 0.9790; δ = -0.01999. 
 
Numerical values of b and m coefficients, as 
function of concentration of adopted samples, are 
given by solving eqs. (11) and (12) and reported in 
Table 2 as well. Substituting the obtained functions 
b(c) and m(c) (sketched in Figures 5 and 6 
respectively) inside the general equation 

 ( ) ( ) ( )[ ]T
p cmcbTc ⋅=µ ,  (13) 

 

 
Fig. 5. Regression of the b coefficient on the 
concentration c. Dots represent available data. 
 
yields the following one: 
 

( ) ( )Tc ceTc ⋅−⋅⋅= ⋅ 01999,09790,0008290,0,μ 693,4
p  (14) 

 

 
Fig. 6. Regression of the m coefficient on the 
concentration c. Dots represent available data. 
 
 

(11) 
(12) 
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Fig. 7. The regressed spatial function µp(c,T), eq. 
(14). 
 
The function µp(c,T) is represented by the surface 
drawn in Figure 7. Experimental data (red dots) are 
fitted quite well as the coefficient of determination 
is R2 = 0.9643 and the RMSE is equal to 0.348. 
 
5.2 From the prototype to the model 
Passing from the prototype to the model is straight: 
solving eq. (9) for the viscosity µm yields: 

 ( )
2

3
693,4

m
101999,09790,0008290,0μ

λ
⋅⋅−⋅⋅= ⋅ Tc ce   

(15) 

The above function is not injective as different 
combinations (c,T) may give the same value of µm. 
In order to promptly setting the concentration to be 
used in laboratory, it is useful to define curves 
(c*,T*) at constant µm*, see red lines in Figures 8 
and 9. The equation of such curves is next given: 

 ( )*

**
m*

δχln
βαlnμln

c
cT

⋅+
⋅−−

=  (16) 

 

 
Fig. 8. The spatial function µm(c,T), eq. (15). Red 
lines define constant values as determined by eq. 
(17). 
 

 
 

Fig. 9. Plain view of the function µm(c,T), eq. (15). 
The concentration of CMC can be derived by 
interpolation, knowing the operating temperature T 
and the viscosity µm of the real event. 

 
that is, substituting constants α, β, χ, δ (see section 
5.1): 

 ( )*

**
m*

01999,09790,0ln
693,4792,4μln

c
cT

⋅−
⋅−+

=  (17) 

 

Conclusions 
Sodium Carboxymethylcellulose (Na-CMC) can be 
used as viscosity modifier for simulating the 
interstitial fluid, filling pores in laboratory debris 
flows. CMC-water solutions can be considered as 
Newtonian fluids for their slightly pseudo-plastic 
behaviour under low rates of deformations. The 
related transparency make them particularly suitable 
in experimentation as the kinematics of a mass 
movement process can be easily described at walls 
using PIV techniques. 
In order to model interstitial fluids of real debris 
flows events or simply mudflows, we established a 
simple double similitude model of Reynolds and 
Froude, obtaining a relationship between dynamic 
viscosities in the model and in the assumed 
prototype (eq. 8). As an example, assuming a 
particular spatial scale λ, we then derived model 
viscosities µm for real mudflows events analyzed in 
[21].   
Viscometric tests carried at different CMC 
concentrations c and temperatures T allowed to first 
define the viscosity function µp(c,T) in the assumed 
prototype by calibrating coefficients appearing in 
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eq. (13). Applying the proposed similitude model 
we then derived the viscosity function µm(c,T) in the 
model (eq. 15) by simply scaling eq. (13) and finally 
the concentration c to be used in laboratory. Curves 
(c*,T*) at constant µm* can be readily derived as 
depicted in Figure 9. 
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